
Lewis Maskell – UP2206042 – Code studio dev diary

Entry 4: Potion game jam

Project discussion
This project was the final game jam I completed in my first year, and was one of my
favourites out of all, as it combined the techniques I had learned in previous game jams
to produce something that I am very proud of.

This project is a potion brewing simulator, similar to “Overcooked”, and a collaboration
between two designers, two artists, myself and one other programmer.

Actions and decisions

During this project, I was responsible for the movement, queues, instantiation of NPCs
and a dynamic system that generates potion orders and stores displays the progress of
such on the UI.

The NPC queue system was something that took a while to figure out and was eventually
scrapped and re-made. The first system I had tried to implement, was not entirely
thought out, and I did not attempt to utilise classes, instead opting for a system of
separate arrays and references across multiple diƯerent scripts to move my NPCs.

Lewis Maskell – UP2206042 – Code studio dev diary

My NPCs at this stage are capsule objects, that contain a nav mesh agent in a nav mesh
area. Programming at this stage, I did not consider the future requirements for each NPC
to store its own requested orders and accommodate for other features we had planned.

The array system worked when I tried to move NPCs and each NPC that I created would
follow the queue as intended. However, issues with this approach would present
themselves very quickly.

The first issue I encountered was the fact that due to my use of arrays, the number of
NPCs that could be spawned in at once was not easily scalable.

The second issue was that when I tried to combine my system with my teammate’s
code, requiring each NPC to store an identifier for its own requested potion, my system
of arrays could not accommodate for that.

Eventually, I scrapped my entire queue system in favour of something more dynamic.

Looking back on my previous projects and workshops, I decided to re-implement my
NPC system using classes. Combining this with the replacement of arrays in favour of
lists, allowed me to create a reference list of all NPCs in game, which automatically
completed some of the functionality I needed in my previous system.

Due to the addition of classes, whenever I wanted to create a new NPC in the scene, I
would instantiate a new NPC game object from a prefab

Lewis Maskell – UP2206042 – Code studio dev diary

This approach ended up working much more eƯectively, allowing me to spawn in NPCs
on a timer, since everything was handled mostly within one function. This also allowed
my teammate to implement their systems without the need to navigate several
connected scripts.

Since this approach worked well, I re-used and adapted this for my “orders request
queue”.

Instead of having to tell each order where it is placed on screen, that functionality was
completed automatically by utilising a horizontal box in the UI.

Each order element is its own prefab, which is instantiated into the horizontal box when
the order is added. It contains its own code for the timer bar and self-deletion on expiry.

Lewis Maskell – UP2206042 – Code studio dev diary

Reflections

I know the use of classes and instantiation was the best approach in these scenarios, as it
demonstrated its own eƯectiveness, when we went to implement and expand our systems.

Being able to avoid the sunk cost fallacy paid oƯ once again, as I saved more time by re-making
the system rather than trying to make it adapt to everything I would add on top.

Insight

Being comfortable in using classes is something I will continue to practice, as it has proven to
be a highly diverse and eƯective tool. Furthermore, constructing my functions so that another
programmer can implement their own code saved a lot of time and eƯort, allowing us to evenly
divide our workloads.

What I would do diƯerently

There is not much I would do diƯerently, aside from planning ahead to organise progress and
time better, as we were cut oƯ in development by the deadlines, leaving the game feeling
incomplete.

